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ABSTRACT 

 
Our previous experiments with additive and multiplicative transparent text on textured backgrounds show that 
readability can be more accurately predicted by adjusting the contrast with a contrast-gain-like divisive factor that 
includes the background RMS contrast.  However, the factor performed poorly at predicting readability differences on 
two different patterned backgrounds.  Using the same images of the previous study we presented the target words alone 
and single letters cut out of the target words.  We found that word identification and word discriminability was affected 
by the backgrounds in the same way that the paragraph search performance was affected, but that letter identifiability on 
these two backgrounds was predicted by the metric.  We also found a significant improvement from including different 
contrast gains for positive and negative contrasts in the metric. Unfortunately, word readability is not necessarily simply 
related to letter identifiability and simple contrast measures. 
 
Keywords:   text readability, text contrast, visual masking 
 

1. Introduction 
 
Scharff and Ahumada 1 measured text readability for two types of transparent text: additive (as occurs in head-up 
displays) and multiplicative (which occurs in see-through LCD virtual reality displays).  These two types of transparency 
resulted in polarity differences: additive text was lighter than the background (positive polarity), and multiplicative text 
was darker than the background (negative polarity).  Text contrast and background texture were also manipulated.  
 
To predict their results, Scharff and Ahumada1 used a contrast metric similar to their earlier Global masking metric2, 3.  
Their adjusted masking index,  
 
C = CT / (1 + (CRMS/C2) 2 ) 0.5 , 
 
combined text contrast CT (with respect to the image luminance) and the image RMS contrast CRMS.  The earlier global 
masking metric computed text contrast with respect to the average background luminance and only used the background 
contrast in the divisive masking term.   
 
Because the contrast of the experimental conditions was defined relative to the background, the global metric predicted 
no effect of text polarity.  The adjusted metric correctly predicted the direction but under-predicted the magnitude of the 
polarity effect, improved performance for the negative contrast text as compared with the positive contrast text. 
 
Neither metric correctly predicted which background texture would be the most detrimental to readability.  They 
predicted that the “wave” pattern (Figure 1, center, shown with multiplicative transparency text at 45% contrast) would 
be more detrimental than the “culture” background (Figure 1, left, shown with additive transparency text at 45% 
contrast) because the wave background had a larger RMS contrast (0.27 and 0.15, respectively).  In fact, the additive 
culture pattern was the most difficult condition to read.  (Graphs of these previous results are included in Figures 3 and 4 
[below] for comparison with the current results.) 
 



 
 
Figure 1. Sample background patterns with text used in the transparent text experiment1: (left) culture pattern with additive text at 
45% contrast, (center) wave pattern with multiplicative text at 45% contrast, and (right) plain background with additive text at 30% 
contrast. Each example was cut from the top left corner of an actual stimulus. 
 
One explanation for the discrepant pattern difference is that the spatial homogeneity of the culture pattern made it 
difficult to read any of the letters, while the large plain areas in the wave pattern allowed some letters to be seen clearly, 
although other letters were difficult to identify. 
  
The task in the original text readability experiment was to find one of three target words (triangle, circle, or square) 
located within paragraphs of text placed on textured backgrounds. In the current experiment, the target words were cut 
from the original text stimuli, so that the backgrounds exactly matched those in the original conditions.  Participants 
performed two word tasks: an identification task, and a discrimination task using decoy words also cut from the original 
text stimuli. These two word experiments were used in an effort to differentially weight different aspects of the original 
task that might have led to the difficulty with the additive transparency, low contrast, culture-pattern condition. The 
word identification task more directly measured readability of the specific target words, regardless of the other words 
around them. The discrimination task required higher-level cognitive processing that occurs when comparing words in 
order to determine which is the target.  The target words were also chopped up so that the legibility of the individual 
letters could be measured.  If a letter is in a constant region of the background, the metric will now only consider that 
region and not reduce its equivalent contrast because of contrast variation elsewhere in the background. 
 

2. Methods 

2.1. Participants 
 
Twenty-eight participants completed all of the word tasks.  Half of these participants completed the letter task for the 
additive transparency condition, while the remaining 14 did so for the multiplicative condition.  An additional 2 
participants completed the letter experiment, so that there were 15 for each transparency type.  All participants were 
undergraduate psychology students who received course research participation credit.  
 

2.2. Stimuli and Procedure 
 
For all experiments, the words and letters were cut from the original transparent text stimuli, so that the way they were 
placed on a specific part of the background was identical to the original conditions1.  See Figure 2 for examples of cutout 



words and letters. As in the original experiment we used all combinations of additive and multiplicative transparency, 
the plain, culture and wave backgrounds, and 30% and 45% text contrast.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. (Top.)  One each of the three target words cut from the three background patterns.  (Bottom.) These same words chopped 
into letters.  All examples are of additive transparency with 30% contrast placed on a plain background of the average luminance of 
the patterned backgrounds. 
 
In addition to the above three variables (transparency type, pattern behind the word, and contrast), the word 
identification task experiment included an additional variable, the background upon which the word was pasted.  The 
background was either a plain background of the same average luminance as that used in the original experiment (~47 
cd/m2), or the background matched the background behind the word.  Each of these background conditions included all 
the target words (six trials for each condition, each of the three target words used twice).  Note that, for the plain 
background cases, the words were cut from the three backgrounds in the original experiment, so 1/3 had the wave pattern 
in a small rectangular area behind the word, another 1/3 had the culture background, and the final third had the plain 
background, so it blended smoothly with the larger background.  For the patterned background condition, each word was 
placed so that the background pattern behind the word matched the larger background.  Thus, the placement of the words 
was not perfectly centered, but varied somewhat across the trials.  In order to make the word identification tasks as 
similar as possible other than the larger background patterns, the target word placement was also varied around center 
when using the plain backgrounds. As in the original experiment, there were three shapes at the bottom of the screen, 
and the participant’s task was to click on the corresponding shape as quickly as possible.  Transparency type and the 
large background conditions were blocked, but word background pattern and contrast were randomized within each 
block. 
 
The word discrimination task experiment required that the participants make a forced-choice decision regarding whether 
or not the presented word was one of the three target words (triangle, circle, or square), or one of six other words also cut 
from the original stimuli.  These decoy words were chosen to be similar to the target words: financial, telephone, crisis, 
cities, shared, and soured.  All words were individually placed in the center of a plain background of the same average 
luminance as that used in the original experiment (~47 cd/m2). 
 



For the letter task, each of the target words (six each for all conditions) was chopped so that the letters could be tested 
for identifiability on the original textured backgrounds.  Due to testing time constraints, transparency type was blocked 
and run as a between variable.  Otherwise, letter presentation was randomized.  For each trial, a small fixation square 
was presented, followed by the letter presented on a plain background of the same average luminance as that used in the 
original experiment (~47 cd/m2).  The letter remained onscreen until the participant indicated its identity by typing it 
using a standard keyboard.  Feedback was given on each trial by a text message that indicated the correct letter. 
 
Experiment order was counterbalanced. Half of the participants did the letter experiment first, and half did the word 
experiments first.  The order of the word experiments was also counterbalanced across participants.  Viewing distance 
was controlled and matched to the original experiment by using a headrest.  Total testing time was approximately one 
hour. 

3. Results 
 
For each participant, median reaction times for each condition were calculated for each of the experiments.  A single 4-
way ANOVA was performed on the word identification data (type of large background, transparency type, background 
pattern behind the word, and contrast).  There were two significant main effects, and four significant two-way 
interactions.  See Table A1 for the summary table.  The pattern behind the words significantly affected response times, 
so that the words placed on plain backgrounds were identified more quickly than those on either of the patterned 
backgrounds, and there were no differences for the two backgrounds behind the words.  Low text contrast conditions 
were significantly slower than high contrast conditions.  The large background did significantly interact with the pattern 
behind the words, as did transparency type and contrast.  Finally, contrast interacted with transparency type.  The wave 
pattern words placed on the wave pattern were significantly harder to identify than those placed on the plain background.  
The large background made no difference for the plain or culture pattern words.  Culture pattern words presented using 
additive transparency were identified significantly slower than those presented using multiplicative transparency.  
Transparency type had no effect for the wave or plain pattern words.  Similarly, the culture pattern words were identified 
significantly more slowly at the low contrast, while there was no effect for the wave or plain pattern words.  Finally, the 
additive transparency conditions were significantly slower than multiplicative conditions only for the low contrast 
conditions.  Contrast did not affect the multiplicative conditions.  Figure 3 shows the 3-way interaction between 
transparency type, word pattern, and contrast.  Large background is not shown as it was not manipulated in the word 
discrimination and letter experiments. 
 
A 4-way ANOVA was also performed on the word discrimination data (target v. decoy, transparency type, background 
pattern behind the word, and contrast).  See Table A2 for the statistical summary table.  As with the identification task, 
there were only significant main effects for word pattern and contrast, with plain pattern words and higher contrasts 
being discriminated more quickly.  Contrast significantly interacted with transparency type, target/decoy, and word 
pattern.  Further, transparency type and word pattern interacted. Similar to the word identification task, the additive 
transparency condition was significantly slower for the low contrast conditions, but the multiplicative conditions were 
not affected by contrast.  Unlike the word identification task, both the wave and culture word patterns were significantly 
slower when using low contrast; again there was no effect of contrast for the plain conditions.  Also similar to the word 
identification task, the culture word pattern led to slower discrimination for the additive transparency conditions; 
transparency type did not affect the multiplicative or plain word patterns.  Both the target words and decoy words were 
significantly slower for the low contrast conditions; further, at low contrast the decoy words were discriminated more 
slowly than the target words, but there was no difference at high contrast.  Figure 3 shows the 3-way interaction between 
transparency type, word pattern, and contrast.  The target/decoy variable is not shown, as it was not manipulated in the 
word identification and letter experiments. 
 
For letter identification data a 3-way ANOVA was performed using transparency type (a between participants variable 
for the letter task), the pattern behind the letter, and contrast.  For the letter identification summary table, see Table A3.  
There were significant main effects for contrast (low contrast slower) and pattern.  The plain background led to 
significantly faster identification times than both patterns, but in contrast with the word tasks, the culture pattern letters 
led to significantly faster responses than the wave pattern letters.  The only significant interaction occurred between 
letter pattern and contrast, with the plain pattern letters not affected by contrast, and the wave and culture pattern letters 



both slower at the lower contrast.  Figure 3 shows the 3-way interaction between transparency type, word pattern, and 
contrast. 
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Figure 3:  Three-way interactions between transparency type, pattern, and contrast for word identification, word discrimination, letter 
identification, and for comparison, the paragraph word search task from Scharff and Ahumada1 .  Error bars indicate 95% confidence 
intervals.  Only for the letter identification task is the low contrast, additive transparency (open symbols), wave pattern (circle 
symbols) condition slower than the corresponding culture pattern condition. 

4.Predictions 
 
We computed predictions for the above results based on the contrast measures described in Scharff and Ahumada1.  
Their contrast-based metrics were computed from the mean luminance and the average contrast variance in the image.  
As they pointed out, the display is not spatially homogeneous because of the space between the lines of text and the text 
margins.  The observer’s gaze path was not monitored.  And the observer’s spatial averaging functions for computing the 
effective mean luminance and the contrast variation are also unknown.  Thus, the average percentage of text pixels in the 
regions controlling the mean luminance and the contrast gain are also unknown.  Scharff and Ahumada1 effectively 
assumed that these regions are the same and derived a formula for the contrast metric as a function of the effective 
proportion of text pixels pT.  They reported the performance of the metric for the value pT = 0, which gives the Global 



masking metric, and for the value pT = 0.2, a value close to the proportion of text pixels in a word, ignoring the spaces 
between words, the lines between words, and the margins.  
 
Including the text pixels in the average value of the luminance level defining zero contrast reduces the contrast of the 
text in a nonlinear way: the contrast of positive contrast text is reduced more than the contrast of negative contrast text is 
increased.  Including the text pixels in the average thus allowed the metric to correctly predict that the additive text was 
more difficult to read than the multiplicative text when the two conditions had the same contrast with respect to the 
background alone.  However, with a value of pT = 0.2, a seemingly high estimate of the proportion of text pixels, the 
adjusted metric still predicted a much smaller polarity effect than was observed.  Nonlinear averaging rules can lead to 
the less frequent text pixels being given more weight than their relative frequency would predict, so we decided to also 
look at the predictions of the metric for the case of pT = 0.5, which is the highest weight text pixels could obtain if the 
averaging rule is symmetric in contrast polarity and treats text and background in the same way.  
 
Similarly to Scharff and Ahumada1, we define T to be a vector (list of numbers) of the text pixel luminances with mean 
mT and variance vT, and we let B be the vector of background pixel luminances with mean mB and variance vB.  We let 
pT represent the proportion of text pixels (the number of pixels in T over the number in T and B) and pB = 1-pT. As 
detailed in Appendix B in Scharff and Ahumada1, the average text contrast with respect to the average luminance is 
given by 
 
CT = mT /(pT mT + pB mB) -1. 
 
And, the pooled variance of the contrasts of all the pixels is given by 
 
CRMS

2 = (pT vT + pB vB + pT pB (mT - mB) 2) / (pT mT + pB mB)2 . 
 
These are combined in a contrast-gain-control fashion to give a predicted effective contrast metric, 
 
C = CT / (1 + CRMS

2/C2
2 ) 0.5. 

 
As before, we set the contrast masking threshold C2 to the to contrast value of 0.05.   
 
When we fit the above metric to the paragraph data, the best fitting value for pT was in the neighborhood of 0.8, which is 
difficult to explain when there are fewer than 50% text pixels.  One possibility we considered was that the luminance 
response of the monitors used in that study may not have fit the simple gamma function used in the calibration.  In the 
current studies with words and letters, only one monitor was used in each study and an empirical gamma function was 
used to accurately account for the entire luminance range.  Another possibility is that the observer’s gains for positive 
and negative contrast are just not the same.  We decided to allow for such an effect in the metric in a simple way: We 
included a contrast gain asymmetry factor A, used only when the contrast or the effective contrast is positive, 
 
C  ← (AC), if C > 0. 
 
We used three values of pT, pT=0, pT=0.2, and pT=0.5 and looked at the symmetric predictions (A=1) and also searched 
for the best value of A for each value of the three values of pT for each of the four experiments.  For the word and letter 
experiments, each metric value was computed for each stimulus separately.  The condition prediction was then the mean 
of the metrics for all the stimuli in that condition. 
 
Table 1 shows for each of the four experiments and for each value of pT the value of A that gave the best correlation and 
rA, the value of that correlation.  The correlation when A=1 is labeled r1 and the F values test the significance of the 
difference between rA and  r1 : 
 
F = [ (rA

2 – r1
2 ) / df1 ] / [ (1- rA

2 ) / df2 ], 
 



where the numerator degrees of freedom df1 is 1, from the one additional parameter estimated (A), and the denominator 
degrees of freedom df2=9 is the number of data points (12) less two for the regression parameters and less one more for 
the asymmetry parameter.  The tabled results show a trade-off between the parameters A and pT in that when a larger 
value of pT is used, a smaller value of A is required.  For the paragraph and word experiments, the improvement in fit 
from the addition of the asymmetry parameter is not significant, but for the letter experiment, the asymmetry factor 
makes a highly significant contribution even for the case of pT=0.5, where the best fitting value of the asymmetry 
parameter is very close to unity (A=0.85).  For the letter experiment, the pT = 0, A = 0.49 fit is as good as those in any of 
the other experiments, but it is significantly worse than the non-zero pT fits, which are similar to each other and 
extremely good.   
 
Table 1: Metric goodness-of-fit (see text for explanation). 
 
                pT  A rA r1 F 
 
                             0 0.677 -0.770   -0.734 1.200 
Paragraphs 0.2 0.801 -0.815   -0.758 2.431 
                             0.5 0.867 -0.806   -0.768 1.527 
     
                             0 0.889   -0.825   -0.822 0.144 
Word search 0.2 1.056   -0.857   -0.853 0.220 
                             0.5 1.129   -0.818   -0.781 1.642 
          
Word                   0 0.952   -0.776   -0.776 0.018 
Discrimination 0.2 1.065   -0.858   -0.853 0.299  
                             0.5 1.134    -0.840   -0.799 2.075 
               
Letter                  0 0.490    -0.839   -0.724 5.50*  
Identification 0.2 0.774    -0.963   -0.835 28.9***  
                             0.5 0.851    -0.966   -0.887 19.7**  
              
*F(1,9,0.95) = 5.12; **F(1,9,0.99) = 10.6; ***F(1,9,0.999) = 22.9. 

 
Figure 4 shows the same latencies appearing in the abscissas of Figure 3 for each of the four experiments now plotted 
against the asymmetric adjusted metric with parameters set for the letter identification experiment (pT =0.2, A = 0.77).  
The plots illustrate that the metric does a good job of prediction for all experiments for the culture and plain 
backgrounds, but that only for the letter experiments do the observers actually perform worse on the wave background as 
the metric predicts. 
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Figure 4: Graphs of the average response latencies as a function of the asymmetric index contrast for word identification, word 
discrimination, letter identification, and for comparison, the paragraph word search task from Scharff and Ahumada1.  Error bars 
indicate 95% confidence intervals for each condition. For all graphs, pT = 0.2, A = 0.77, C2 = 0.05. 

5. Discussion and Conclusions 
 
Explanations have been provided for the problems encountered in our previous attempts to use the contrast gain model to 
predict text readability. With the simple contrast gain asymmetry modification, the adjusted masking metric of Scharff 
and Ahumada1 was a very good predictor of letter identifiability. It may not predict word identifiability when there is 
large variation in letter identifiability, because the combination rule from letters to words is not linear.  As an extreme 
case of what we believe to be the reason that the metric worked poorly with the “wave” background, imagine a 
background of black and white vertical bars one character wide with the dark text combined multiplicatively.  Only the 
letters on the white bars would be visible.  Raising their contrast above a low, but readable level would have no effect on 
performance, and the identifiability of the words would depend on the predictability of the illegible letters.  There may 
be some contrast gain masking in this situation, but it will not be the dominant factor determining word readability.  
Similarly, in a study of the relationship between letter recognition and reading speed, Legge, Mansfield, and Chung4 



concluded that when letter recognition is degraded (in their case in peripheral vision), word recognition becomes slowed 
and lexical inferences are utilized to a greater degree. 
 
The contrast gain asymmetry factor as estimated here is that the ratio of the positive gain to the negative gain is 
somewhere between 0.5 and 0.9.  Such a gain asymmetry is expected if the internal luminance response function is 
modeled as having a monotonically decreasing slope, such as a logarithmic function or a power function with an 
exponent less than one.  We plan to try to follow the suggestion of Martens and colleagues 5, 6 that image quality metrics 
need to include a more detailed model of the internal luminance response.    
 
 

6. Appendix A: Summary Tables 
Table A1.  Response Times Analysis Summary for Word Identification (ms) 
 
 

Effect df Effect MS Effect df Error MS Error F  p-level 
Background 1 49887 27 50240 0.99 0.33 

Transparency 1 126858 27 111865 1.13 0.30 
Word Pattern 2 1938800 54 26346 73.59 0.00 

Contrast 1 514545 27 24270 21.20 0.00 
B x T 1 11188 27 37749 0.30 0.59 
B x W 2 165566 54 14894 11.12 0.00 
T x W 2 318516 54 16723 19.05 0.00 
B x C 1 11717 27 20925 0.56 0.46 
T x C 1 173861 27 18314 9.49 0.00 
W x C 2 172249 54 19026 9.05 0.00 

B x T  x W 2 11062 54 21442 0.52 0.60 
B x T x C 1 4022 27 17066 0.24 0.63 
B x W x C 2 16722 54 10869 1.54 0.22 
T x W x C 2 17823 54 18523 0.96 0.39 

B x T x W x C 2 16736 54 22348 0.75 0.48 
 
MS: Mean Squared    df: degrees of freedom   
 
 
Table A2.  Response Times Analysis Summary for Word Discrimination (ms) 
 

Effect df Effect MS Effect df Error MS Error F p-level 
Transparency 1 351223 27 439003 0.80 0.38

Target v. Decoy 1 236025 27 96774 2.44 0.13
Word Pattern 2 6369978 54 235881 27.01 0.00

Contrast 1 4241803 27 206628 20.53 0.00
T x TD 1 85817 27 54933 1.56 0.22
T x W 2 697834 54 134067 5.21 0.01

TD x W 2 12816 54 35738 0.36 0.70
T x C 1 727722 27 104848 6.94 0.01

TD x C 1 322482 27 25288 12.75 0.00
W x C 2 887453 54 161283 5.50 0.01

T x TD x W 2 15158 54 33724 0.45 0.64



T x TD x C 1 130121 27 26148 4.98 0.03
T x W x C 2 202004 54 90117 2.24 0.12

TD x W x C 2 45228 54 29170 1.55 0.22
T x TD x W x C 2 2000 54 51772 0.04 0.96

 
MS: Mean Squared    df: degrees of freedom   
 
 
Table A3.  Response Times Analysis Summary for Letter Identification (sec) 
 
Effect df Effect MS Effect df Error MS Error F p-level
Transparency  1 8.67285 26 3.45 2.51 0.13
Pattern 2 11.17063 52 0.28 40.33 0.00
Contrast 1 3.33212 26 0.12 26.84 0.00
T x P 2 0.26214 52 0.28 0.95 0.39
T x C 1 0.00399 26 0.12 0.03 0.86
P x C 2 0.46326 52 0.12 3.98 0.02
T x P x C 2 0.08204 52 0.12 0.71 0.50
 
MS: Mean Squared    df: degrees of freedom   
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